人工智能大牛资料(国内人工智能大牛)

人工智能 612
本篇文章给大家谈谈人工智能大牛资料,以及国内人工智能大牛对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 本文目录一览: 1、平时总要聊点AI吧!人工智能入门书籍、视频、课程推荐

本篇文章给大家谈谈人工智能大牛资料,以及国内人工智能大牛对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

平时总要聊点AI吧!人工智能入门书籍、视频、课程推荐

大家好,我是聚灵阵主。其实开着一篇我自己也很忐忑,毕竟阵主不算是深度的从业人员,但是我自己目前的专业也是跨在和人工智能的交叉学科上面。这篇文章准备搜集一些学习人工智能所需要的资源网站等,即使为身为小白的我自己准备的,也给大家参考一下。同时若是文章有什么纰漏疏忽错误之类的,欢迎大家指正!

之前被赶鸭子上架的时候就发现,学习AI少不了数学的基础,我自己上本科的时候学过高等数学,线性代数和数理统计,但是很多早就已经还给老师了。为了重新快速学会这些知识,我是重新搞了一个考研的课程视频来看,大家可别小看考研课程,虽然这些考研名师不是厉害的数学家或者学者,但是对于短时突击各大知识点,这些课程真的非常有用。

我是看的张宇的考研数学基础班,资源的话是校内PT上下载的,大家如果没有ipv6的话,也可以在考研论坛上找找类似的课程。像B站上面也有相关的课程视频,大家可以看看。

其他的参考书我就买了一套教材,用到的时候就当工具书,题目也做了一圈,感觉还是很有用的,至于知乎上推荐的那些歪果仁的教材,我也没用过,不知道会不会更好。

吴恩达是人工智能领域的超级大牛,他讲的课程也是被各路大神分享。大家如果有空的时候就学习一下这个课程的话,也是很有用的。

林轩田的这个课程是我的同事推荐给我的,说是入门AI很有用的课程。除了机器学习基石,我看林轩田老师还有一个机器学习技法的课程,大家也可以一起看看。这个我已经下载好了,准备有空看。另外这个课程还有一个配套的教材。

这个是一个计算神经科学的课程。我们学习人工智能,很多时候也要从真正的人类的智能中寻找参考点,这个计算神经科学也是同事推荐给我的,我看了之后觉得讲得也挺好的,大家感兴趣可以去看看。

作为一个编程小白,我是觉得编程最难了,试图学习过Python,但是至今也没有学会,等有空了准备跟着Python教程再学一学。

其他的内容中,阵主准备在进修一下自己的matlab,然后再根据自己的专业找一些学习资料。

好了,本文的分享就是这些。希望大家如果想学习一些人工智能的相关知识的话,还是可以看看的。最后阵主想说的是,现在的确是一个信息爆炸的时代,给你的教材参考书永远比你需要的多,与其在资料中眼花缭乱,不如拿准资料之后就安心学习吧!

华人在人工智能领域很牛,那到底有多牛?

人工智能这把火已经烧到了国家战略层面,连美国总统和政府机构也卷了进来。上周四,奥巴马主持白宫前沿峰会,展望美国在未来50年的发展。峰会中,白宫发布报告《国家人工智能研究与发展策略规划》。

这两天,自媒体没少炒作这个报告;我自己呢,倒是特别地对这个报告中的两张趋势图感兴趣。报告中说,从2013年到2015年,SCI收录的论文里,提到“深度学习”的文章增长了约六倍,同时强调,“按文章数计算,美国已不再是世界第一了。”

美国不是世界第一?谁是世界第一呢?来看报告中的两张趋势图:

1.

上图是每年SCI收录的文章里,提到“深度学习”或“深度神经网络”的文章数量变化趋势,同时按国家做了区分。数据本身是从Web of Science核心数据库里查询得到的。

2.

第二张图和第一张图其他条件一样,只是增加了一个“文章必须至少被引用一次”的附加条件。也就是说,第二张图统计的文章数,是被引用过的“有效文章数”,相对来说更合理一些。

两张图里,中国都在2014年和2015年超过了美国(以及其他所有第二梯队的国家),居于领跑者的位置。

问题来了,在AI研究领域,中国人真有这么强吗?

从这些年的直觉看,中国人/华人在人工智能领域里的大牛比比皆是,吴恩达、孙剑、杨强、黄广斌、马毅、张大鹏 ……随口可以说出一大串,我自己在Google的研究团队,微软研究院等地亲眼看到的,也到处是中国人、华人的面孔。但这只是直观感受。整体来看,中国人/华人所做的科研贡献到底有多重要,对人工智能的推动作用到底有多大?白宫报告里的统计是不是科学、合理?

其实,对美国国家战略规划里的统计,我自己是有几个疑问的,主要包括:

直接搜索关键字“深度学习”、“深度神经网络”,真的能涵盖这些年人工智能领域的所有科学研究进展?像机器人、智能控制、机器视觉、无人驾驶等领域里,没有提及深度学习的文章眼见还有不少。严格按关键词匹配会漏掉多少相关文章?是否影响统计结果?

“文章至少被引用一次”,比较科学,但好像还远远不够。这种统计,真的不需要考虑SCI的影响因子吗?不考虑的话,会混进多少较差期刊上发表的比较水的论文?这些数据会不会被国内研究机构靠SCI引用数来评职称的风气污染?

在全球化时代,按国家统计,会不会有明显偏差?白宫报告没有提到被统计的文章是如何归入不同国家的。如果按作者发表文章时的所在机构,那大量在国外机构访问的中国学者会不会被算成外国人?中国人和外国人合写的文章该如何统计?如果按期刊所属国家和地区,那不同国家间的期刊水平(影响因子)差异是不是会让统计结果带有偏见?

基于此,我也想自己去做个统计。

统计前,给自己设了几条原则:

从期刊的影响因子出发,只统计影响因子高的顶尖期刊。

从Web of Science主题词出发,涵盖人工智能相关的所有科研领域,而不仅是深度学习方面的文章。

关注对象是华人,而不是用国家分类的办法去比较中国和外国——这个是我自己的选择,因为今天的学术界,国家间的合作和交流已不可忽视。类似吴恩达这样的外籍华人,其实也在为中国的人工智能发展做贡献。与其限定国家,不如从整体上看一看,地球上的华人科学家、研究者群体,到底有多厉害。

关注时间范围是2006到2016年,跨度10年左右——因为许多人说,这一波人工智能大潮是从2006后的几年时间里,才开始真正兴起的。

我的统计结果

来看下2006到2016年间华人作者的平均贡献:

3.

在2006到2016年的时间段里,近两万篇最顶级的人工智能文章中,由华人贡献的文章数和被引用数,分别占全部数字的29.2%和31.8%。近十年,华人用五分之一左右的作者人数,平均贡献了三成的顶级AI研究文章和被引用数。统计角度,这已经是超出平均水平的科研贡献了。

但平均数并不能看出华人科学家、研究者在最近几年的发力程度。来看2006到2015年间,华人贡献的文章数和被引用数的变化趋势:

4.

2006到2015年间,华人作者参与的顶级AI论文,占全部顶级AI论文数量的比例,从23.2%逐年递增到42.8%。而华人作者参与的顶级AI论文被引用次数,占全部顶级AI论文被引用次数的比例从25.5%逐年递增到55.8%(2016 年数据较少,未用于趋势比较)。

也就是说,即便只统计顶级出版物里的顶级文章,中国人/华人在人工智能领域的贡献,在发展趋势上也和白宫报告中揭示的规律如出一辙——无论从哪个角度来说,中国人/华人正在人工智能领域里发挥举足轻重的作用,而且,从2014年,2015年开始,中国人/华人已经处于人工智能研究的领先地位,占据了人工智能科研世界的半壁江山!

个案分析

会有人觉得这个统计很不可思议吗?这个结果会出乎很多人意料吗?我们还可以拿一个更具体的例子,来深入分析一下。

在顶级人工智能期刊和会议录里,我来举个大名鼎鼎的例子吧:IEEE模式分析与机器智能汇刊(IEEE Transactions on Pattern Analysis and Machine Intelligence,简称PAMI),2015年影响因子6.077,高到没朋友,想往这里投稿的同学可能都知道被接受和发表的难度有多恐怖。

我从《IEEE模式分析与机器智能汇刊》里按引用数选出2006到2016年间的前500篇论文,下面是这500篇论文的引用数分布情况:

5.

其实很恐怖的,前500篇文章最高引用数2715,最低引用数41——真顶级期刊!普通期刊难以望其项背呀。

那么,这500篇最顶级的人工智能论文里,华人科学家、研究者的贡献如何呢?先说几个数字:500篇顶级文章的作者一共1220人,其中华人科学家、研究者316人,占25.9%。所有作者单独累加计算的被引用数总和是231361次,其中,华人科学家、研究者被引用数总和是63846 次,占27.6%。如果单看2014年(当年华人的文章数、引用数均较高)的数据,华人科学家、研究者被引用数占51.8%,超过了半数。

6.

如果只看《IEEE模式分析与机器智能汇刊》在2006到2016年间,引用数最多的10位华人作者和10位非华人作者的具体情况,也是一个很有趣的表格:

7.

《IEEE模式分析与机器智能汇刊》的华人前10位大牛,与非华人前10位大牛,在每个人的总引用数上几乎不相上下。的确,最顶尖的人工智能科学家里,中国人/华人的贡献丝毫不亚于其他科学家。

另外,如果对人工智能特别是模式识别的研究领域不熟悉,那么,记住表中这20位顶尖科学家的名字吧。有兴趣的话,大家可以去搜一搜他们的简历,看看他们都在哪里工作,在哪里做研究,他们的学生、同事都是谁,相信会有很多发现。

人工智能界有哪些大牛

人工智能已经逐渐建立起自己的生态格局,由于科技巨头的一系列布局和各种平台的开源,人工智能的准入门槛逐渐降低。未来几年之内,专业领域的智能化应用将是人工智能主要的发展方向。无论是在专业还是通用领域,人工智能的企业布局都将围绕着基础层、技术层和应用层三个层次的基本架构。

基础层就如同大树的根基,提供基础资源支持,由运算平台和数据工厂组成。中间层为技术层,通过不同类型的算法建立模型,形成有效的可供应用的技术,如同树干连接底层的数据层和顶层的应用层。应用层利用输出的人工智能技术为用户提供具体的服务和产品。

你必须得知道的人工智能领域的大师与大事

小西:小迪小迪,我发现人工智能发展史上很多事情都跟下棋有关呐。

小迪:是啊,人工智能发展史还是要从下棋说起,棋类游戏很多时候都被人类看做高智商游戏,在棋类游戏中让机器与人类博弈自然再好不过了。早在1769年,匈牙利作家兼发明家Wolfgang von Kempelen就建造了机器人TheTurk,用于与国际象棋高手博弈,但是最终被揭穿,原来是机器人的箱子里藏着一个人。虽然这是个骗局,但是也体现了棋类游戏是人机博弈中的焦点。

小西:哇,这么早啊!

小迪:是啊,在1968年上映的电影《2001太空漫游》里,有个情节是机器人HAL与人类Frank下国际象棋,最终人类在机器人面前甘拜下风。

小西:哈哈,看来很早人们就觉得有一天,机器人会在下棋方面超过人类哦。

小迪:是啊,直到1997年,IBM的深蓝智能系统战胜了国际象棋世界冠军Kasparov,这是一次正式意义上的机器在国际象棋领域战胜了人类。不过,当时时代杂志发表的文章还认为,计算机想要在围棋上战胜人类,需要再过上一百年甚至更长的时间。因为围棋相比于国际象棋复杂很多,而IBM的深蓝也只是一个暴力求解的系统,当时的计算机能力在围棋千千万万种变化情况下取胜是不可能的。

小西:后来我知道。没有过100年,20年后AlphaGo在20年后的2016年打败了围棋高手李世石,这下人工智能引起了全世界的关注。

小迪:恭喜你,学会抢答了!

小西:哈哈,过奖过奖。除了下棋,人工智能发展史上有没有什么特别著名的事件或者有名的大师呢,快给我科普科普呀!

小迪:那可就太多了啊,无数科学家默默地耕耘才有了今天智能化的社会,三天三夜都说不完。我就说说近些年火爆的深度学习的发展史吧。

小西:好,洗耳恭听呢!

感知器的发明

1943年Warren McCulloch和Walter Pitts一起提出计算模型,在1957年康奈尔大学的Frank Rosenblatt提出了感知器的概念,这是整个深度学习的开端,感知器是第一个具有自组织自学习能力的数学模型。Rosenblatt乐观地预测感知器最终可以学习,做决定和翻译语言。感知器技术在六十年代非常火热,受到了美国海军的资金支持,希望它以后能够像人一样活动,并且有自我意识。

第一次低潮

Rosenblatt有一个高中校友叫做Minsky,在60年代,两人在感知器的问题上吵得不可开交。R认为感知器将无所不能,M觉得感知器存在很大的缺陷,应用有限。1969年,Minsky出版了新书《感知器:计算几何简介》,这本书中描述了感知器的两个重要问题:

单层神经网络不能解决不可线性分割的问题,典型例子:异或门;当时的电脑完全没有能力承受神经网络的超大规模计算。

随后的十多年,人工智能转入第一次低潮,而Rosenblatt也在他43生日时,因海事丧生,遗憾未能见到神经网络后期的复兴。

Geoffrey Hinton与神经网络

1970年,此时的神经网络正处于第一次低潮期,爱丁堡大学的心理学学士Geoffrey Hinton刚刚毕业。他一直对脑科学非常着迷,同学告诉他,大脑对事物和概念的记忆,不是存储在某个单一的地方,而是分布式的存在一个巨大的神经网络中。分布式表征让Hinton感悟很多,随后的多年里他一直从事神经网络方面的研究,在爱丁堡继续攻读博士学位的他把人工智能作为自己的研究领域。

Rumelhart与BP算法

传统的神经网络拥有巨大的计算量,上世纪的计算机计算能力尚未能满足神经网络的训练。1986年7月,Hinton和David Rumelhart合作在Nature杂志上发表论文系统地阐述了BP算法:

反向传播算法(BP)把纠错运算量下降到只和神经元数目有关;BP算法在神经网络中加入隐层,能够解决非线性问题。

BP算法的效率相比传统神经网络大大提高,计算机的算力在上世纪后期也大幅提高,神经网络开始复苏,引领人工智能走向第二次辉煌。

Yann Lecun与卷积神经网络

1960年Yann Lecun在巴黎出身,在法国获得博士学位后,追随Hinton做了一年博士后,随后加入贝尔实验室。在1989年,Lecun发表论文提出卷积神经网络,并且结合反向传播算法应用在手写邮政编码上,取得了非常好的效果,识别率高达95%。基于这项技术的支票识别系统在90年代占据了美国接近20%的市场。

但也是在贝尔实验室,Yann Lecun的同事Vladmir Vapnik的研究又把神经网络的研究带入了第二个寒冬。

Hinton与深度学习

2003年,Geoffrey Hinton在多伦多大学苦苦钻研着神经网络。在与加拿大先进研究院(CIFAR)的负责人Melvin Silverman交谈后,负责人决定支持Hinton团队十年来进行神经网络的研究。在拿到资助后,Hinton做的第一件事就是把神经网络改名为深度学习。此后的一段时间里,同事经常会听到Hinton在办公室大叫:“我知道神经网络是如何工作的了!”

DBN与RBN

2006年Hinton与合作者发表论文——《A Fast Algorithm for Deep BeliefNet》(DBN)。这篇文章中的算法借用了统计力学中“波尔兹曼分布”的概念,使用了所谓的“受限玻尔兹曼机”,也就是RBN来学习。而DBN也就是几层RBN叠加在一起。RBN可以从输入数据进行预训练,自己发现重要的特征,对神经网络的权重进行有效的初始化。这里就出现了另外两个技术——特征提取器与自动编码器。经过MNIST数据集的训练后,识别错误率最低降到了只有1.25%。

吴恩达与GPU

2007年,英伟达推出cuda的GPU软件接口,GPU编程得以极大发展。2009年6月,斯坦福大学的Rajat Raina和吴恩达合作发表文章,论文采用DBNs模型和稀疏编码,模型参数高达一亿,使用GPU运行速度训练模型,相比传统双核CPU最快时相差70倍,把本来需要几周训练的时间降到了一天。算力的进步再次加速了人工智能的快速发展。

黄仁勋与GPU

黄仁勋也是一名华人,1963年出生于台湾,在1993年于斯坦福毕业后创立了英伟达公司,英伟达起家时主要做图像处理芯片,后来黄仁勋发明GPU这个词。相比于CPU架构,GPU善于大批量数据并行处理。而神经网络的计算工作,本质上就是大量的矩阵计算的操作,GPU的发展为深度学习奠定了算力的基础。

李飞飞与ImageNet

深度学习的三大基础——算法,算力和数据。上面提到的主要是算法与算力的发展,而数据集在深度学习发展也起到了至关重要的作用。又是一位华人学者——李飞飞,于2009年建立ImageNet数据集,以供计算机视觉工作者使用,数据集建立的时候,包含320个图像。2010年,ILSVRC2010第一次举办,这是以ImageNet为基础的大型图像识别大赛,比赛也推动了图像识别技术的飞速发展。2012年的比赛,神经网络第一次在图像识别领域击败其他技术,人工智能步入深度学习时代,这也是一个历史性的转折点。

Yoshua Bengio与RELU

2011年,加拿大学者Xavier Glorot与Yoshua Bengio联合发表文章,在算法中提出一种激活函数——RELU,也被称为修正线性单元,不仅识别错误率普遍降低,而且其有效性对于神经网络是否预训练过并不敏感。而且在计算力方面得到提升,也不存在传统激活函数的梯度消失问题。

Schmidhuber与LSTM

其实早在1997年,瑞士Lugano大学的Suhmidhuber和他的学生合作,提出了长短期记忆模型(LSTM)。LSTM背后要解决的问题就是如何将有效的信息,在多层循环神经网络传递之后,仍能传送到需要的地方去。LSTM模块,是通过内在参数的设定,决定某个输入参数在很久之后是否还值得记住,何时取出使用,何时废弃不用。

后记

小迪:其实还有好多有突出贡献的的大师,要是都列出来可以出一本很厚很厚的书啦!

小西:这些大师都好厉害呀,为了我们的智能化生活体验,辛勤付出了一辈子。

小迪:是啊,还有很多学者默默无闻地工作,一生清苦。

小西:他们都好伟大,有突出贡献的都应该发奖发奖金,对对对,诺贝尔奖!

小迪:哈哈。诺贝尔奖多数是为基础学科设立的。不过计算机界也有“诺贝尔奖”——图灵奖,这可是计算机界最高奖项哦!2019年3月27日,ACM宣布,Geoffrey Hinton,Yann LeCun ,和Yoshua Bengio共同获得了2018年的图灵奖。

小西:太棒了,实至名归!

小迪:当然,图灵奖在此之前也授予了很多在人工智能领域的大牛,像Minsky,John McCarthy这些,还有华人科学家,现在在清华大学任职从事人工智能教育的姚期智先生在2000也获得过图灵奖呢!

小西:大师们太不容易了,我们也要好好学习呀!

小迪:是呀!如今我们站在巨人的肩膀上,许多人都可以接触到深度学习,机器学习的内容,不管是工业界还是学术界,人工智能都是一片火热!

小西:希望这一轮人工智能的兴起不会有低潮,一直蓬勃发展下去,更好地造福人类。

小迪:嗯!

迈克斯·泰格马克在人工智能领域是什么地位?

迈克斯·泰格马克。

迈克斯·泰格马克是MIT麻省理工学院教授,同时也是美国物理学会研究员,被誉为“最接近费曼的科学家”。

泰格马克创始了未来生命研究所 Future of Life Institute,致力于用技术来改善人类的未来,汇聚了8000多位世界杰出的人工智能专家,包括史蒂芬·霍金、埃隆·马斯克、比尔·盖茨、雷·库兹韦尔、拉里·佩奇等。曾获《科学》杂志2003年度突破奖第一名,著有畅销书《穿越平行宇宙》《生命3.0》,获得霍金、马斯克、尤瓦尔大力推荐。

他可以算是人工智能领域真材实料的技术大牛了。

可以看下财新专访麦克斯·泰格马克的时候。

被称为业界大牛的斯坦福计算机视觉实验室的李飞飞(Google AI 中国中心负责人)具体牛在哪里?

就凭她有诸多院士的头衔也足以说明很牛了。

李飞飞美国国家工程院院士、美国国家医学院院士、美国艺术与科学院院士,美国斯坦福大学首位红杉讲席教授,以人为本人工智能研究院(HAI)院长,AI4ALL联合创始人及主席,Twitter公司董事会独立董事。

李飞飞的工作包括括受认知启发的AI,机器学习,深度学习,计算机视觉和AI+医疗保健,尤其是用于医疗保健交付的环境智能系统。她还从事认知和计算神经科学方面的工作。她发明了ImageNet和ImageNet Challenge,其中ImageNet Challenge是一项重要的大规模数据集和基准测试工作。

成功之路

李飞飞是斯坦福大学计算机科学系的第一位红杉教授,同时为斯坦福大学人类中心人工智能研究所的丹宁家族联席主任。曾担任Google副总裁,Google Cloud AI/ML首席科学家。

2020年2月,李飞飞当选为美国国家工程院院士,当选的七位华人成员中,她是唯一的女科学家;同年5月,担任Twitter公司董事会新独立董事;10月,当选为美国国家医学院院士。

作为硅谷高科技领域的华裔精英,她的成功除了天时地利人和的因素之外,更来自她自身的生命力。

以上内容参考百度百科-李飞飞

人工智能大牛资料的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于国内人工智能大牛、人工智能大牛资料的信息别忘了在本站进行查找喔。

扫码二维码